New Directions in X-ray Scattering

Apurva Mehta
Mike Toney
Sean Brennan
John Bargar
Sam Webb

Stanford Synchrotron Radiation Laboratory
Goal for the Workshop

- Identify important Scientific Directions
- Review Proposed Configuration of SSRL scattering facilities
 - Beamlines
 - Detectors
 - Other Capabilities (Ancillary Equipment)
 - Software
- A Document with Recommendations
10:00: Present one possible direction (to get started)

10:30 – 12:30: Talks about exciting science we would like to do in the near future

Lunch – discussion of the morning sessions

1:30 – 3:30 – Plan the direction SSRL scattering program should take and the capabilities new beamlines should provide. Make a list of recommendation for the SSRL directorate and SAC
Spear 3: new opportunities

500 mA

SPEAR3
new wiggler

SPEAR2

Flux

Energy (keV)

Flux density

Energy (KeV)

Flux density

Energy (eV)

Dec. 6th 2006

New Directions in X-ray Scattering
Science (a selection of interesting fields)

- Sample Orientation controlled
 - E.g. - single crystal, interfaces, etc..

- Time based
 - Study of chemical reactions and other time dependent processes, such as settling of colloids, etc...

- 2D diffraction pattern
 - Study of Texture
 - E.g., Deviatoric strain, IBAD/ITaN etc..

- High angular resolution
 - E.g., phase transition, structure solution, etc...
Outline: Proposed configuration

- **Beamlines** – accomplish the science with following BLs
 - Psi/8circle
 - 3 or 4 circle with a large 2D detector
 - high angular resolution 2+ circle

- **Detectors**

- **Sample Capabilities:**
 - Cryostats, reactors, strain rigs etc

- **Software**
Psi/8 circle

High Brightness – 5 – 30 keV: 7-2

- For sample alignment
 - \(\Theta, \chi, \phi, \Theta_H \)

- Detector
 - \(2\Theta + 2\Theta_H \)

- Analyzer + small 2D detector and/or fast 1D psd

- Temp: 8 – 1200 K, other reactors, sample chambers

Dec. 6th 2006

New Directions in X-ray Scattering
3Circle with large Area Detector

High Flux Density - 5 - 40 keV : 10-2

- 2 circle - Chi and Phi for sample - theta locked
- Quick switch between a large 2D detector and a point detector (analyzer) on 2th arm
- Time based expt., study of texture, thin films.
- Reactors, temperature stages, environmental chambers
2+ circle diffractometer

5-14 keV : 2-1

- Small Chi arc.
- High resolution diffraction setup
 - Several different analyzers – easy setup
 - High angle monochromator
- Other detector sets
 - Soller Slits
 - Reflectivity
 - Small 2D detector/linear PSD off axis diffraction
Detectors

- Large area detector
 - > 300x300 mm
 - high dynamic range
 - Low dark current
 - fast readout (1hz or better)

- Small area detector/Linear PSD
 - Ultra-high dynamic range

- Energy sensitive point detectors
 - E resolution of ~ 150 eV at 8 keV
 - High count-rate

- High Count-rate PMTs
Other Capabilities

- Temperature stage: 8 – 300 K (displex)
- Temperature stage: 300 -1300K.
- Temperature stage: 70 – 700K – small
- Flow reactors.
- Electrochemical cells.
- Modular sample mount for other use developed sample stages, e.g., strain rigs, high pressure cells, hydrogen cell, chamber for radioactive samples, etc...
Software

◆ **Data Collection:**
 ◆ Intuitive – easy to use
 ◆ Versatile – easy to customize for a user applications (via macros, e.g.)

◆ **Data Analysis:**
 ◆ Easy conversion of 2D images to Chi-Q space.
 ◆ Easy splicing of 2D images into a reciprocal lattice map.
 ◆ Semi-automated texture analysis from 2D diffraction images.
Goal for the Workshop

- Discuss Scientific Directions

Two Morning Science Sessions

- Feedback on proposed SSRL scattering facilities
 - Beamlines
 - Detectors
 - Other Capabilities
 - Software

After Lunch