Undulator Controls
Josh Stein : ANL/APS

LCLS Week - Oct 24-26
Notable achievements FY05

• Image capturing system test stand complete
• Motion control test stand complete
• Undulator cradle motion design modifications
• Cable plant planning and routing - heat load considerations
Image Capturing / Analysis System

- Test Stand accomplishments
 - 2 Megapixel Cameralink camera
 - Cameralink frame grabber
 - EPICS integration

- Final system
 - Acquire & analyze beam images @ 30 fps
 - 1600 x 1200 pixel image
 - 12-bit camera
Image Analysis: System Hardware Overview

- **Apple G5 Computer**
 - Dual 2.5 GHz G5, OS 10.4.x
 - Running EPICS 3.14.7

- **Active Silicon, Phoenix Frame Grabber**
 - Cameralink PCI board
 - no onboard custom FPGA programming required

- **Imperx MDC-1600 2 Megapixel Camera**
 - 1600 x 1200 pixels, up to 33 fps, 12-bit resolution
 - Faster frame rate with hardware ROI
Image Screen Shots

Captured Image

Background Subtracted
Current Status/Performance

- Acquire, Process, Analyze, Display @ 10 fps
 - more than 10 fps would overrun current number of capture buffers
 - image display on screen is presently the limiting factor
 - display full image at lower refresh rate
 - display smaller region at faster refresh rate

- Acquire, Process, Analyze, w/o Display @ 30 fps

- Calculations (ROI = 500 x 500 pixels)
 - Background subtraction (entire image)
 - Row & column sums (in ROI)
 - Histogram (in ROI)
 - Centroid,
 - sigma, FWHM, FWTM (in ROI)
OTR Imaging : FY06 Goals

- Although the OTR diagnostic has been de-scoped from the production budget, we still have funding for development.
- Complete SRS - define the client side applications and performance specs
 - What do the scientists need?
 - How to incorporate OTR data with scripting / XAL type tools
- Continue to refine and optimize capturing routines
- Follow processor change in new Macintosh models (buy new Intel based machine this year?)
- Source/Release control for OS X code
 - CVS/Subversion
 - SLAC/APS integration
CAM Mover system

• Test Stand accomplishments
 – Preliminary architecture complete
 – Embedded IOC configured
 – EPICS server configured for DHCP and remote booting
 – Serial based motor control completed

• Mock-up accomplishments
 – LabView based 5 axis control system complete
 – Beta alignment and tuning algorithms complete
 – Cam mover system design changes implemented
 • New bearing design
 • Expanded wedge implemented
 • High ratio gear box added
CAM Mover system: architecture

- Embedded IOC - one per undulator segment
- Serial control of “smart” motors
- On-board ADC to monitor rotary and linear encoders
- EPICS based databases w/mover record support to translate coordinate move requests
- High level application on remote clients for BBA and calibration routines
CAM Mover system: architecture

CA Compliant application(s)

CA over TCP/IP

Field IOC (motion control/position readouts)

Angular Position Sensors

Linear Position Sensors

Motion Drive/Devices

Embedded IOC:
- Boot via network with flash disk backup
- Network configuration via DHCP

DC

Ethernet

RS-232

RS-232
Undulator Controls Status Report

CAM Mover system : Embedded IOC

- http://www.diamondsystems.com
- Prometheus w/16x16 bit ADCs
- Size: 5.5”x5.75”x1.7”. Power: 5W.

CAM Mover system: Smart Motor

SmartMotors from Animatics Corporations
2 for undulator segment translation.
5 for cradle assembly camshafts.
http://www.animatics.com

RS-232
Integrated controller/drive
DC Servo motor
CAM Mover system: Linear transducer

http://www.novotechnik.com
Linear transducers (w/2-micron repeatability) from Novotechnik US, Inc.
2 for undulator segment translation and 8 for cradle assembly.
With 16 bit readout, the resolution is 0.15 micron.

Rotary transducers (w/0.004 degree repeatability) from
Novotechnik US, Inc. 5 for cradle assembly camshafts. With 16 bit
readout, the resolution is 0.005 degree.
Mover system status and FY06 Goals

• Asyn/EPICS/Linux embedded IOC SmartMotor development: Complete
• Motor drive unit test: Complete
• ADC sensor development: Complete
• Cam Shaft motion control and position feedback system development: Feb ‘06
• Client (calibration) tools development: June ‘06
• Verification environment: July ‘06
• Network management: ??
• Configuration management: ??
Other Undulator Controls tasks on the horizon

• Support SUT
 – Integrate EPICS based motion of the undulator axis (Feb 06)
 – Nail down temperature monitoring scope and implement (June 06)
• Determine feasibility of in-vacuum high precision stages (nano-motion)
 – We did some work in FY05 to characterize these stages; now we have to make them work with one of our “standard” motion control solutions (this requires adding activities)
• Support BPM testing at the APS
 – Liaison to APS/Controls
 • Integrate with APS timing system
 – Analysis software (ADC)
• Complete cable routing and thermal analysis of the Undulator hall
• Power supplies for the quads/correctors
Supporting Slides

• Undulator design supporting Slides Follow
Undulator design changes

- Extended wedge
- Roller bearing
- High ratio gearbox
Undulator design changes
Undulator design changes
Undulator design changes
Undulator design changes
Supporting Slides

- Cable and thermal mapping slides follow
Undulator Controls Status Report

Power cable for Quad/ Correctors
18 pairs @ 2W/metre

Cell 1: Assume water cooled electronic boxes ABCD, water cooled cable tray from precision controller water conn.

DlB
5 m&w @ S, 25 W
1 m @ S, 5 W
Current = 6
2
-36 W

Electronics Boxes
A = 12 W
B = 12 W
Motion Iac 7 W
C = Photo multi
D = Alignment 10 W

Stein@aps.anl.gov

Josh Stein - ANL/APS
Stein@aps.anl.gov
Heat Generators

<table>
<thead>
<tr>
<th>Component</th>
<th>Transient Power (W)</th>
<th>Quiescent Power (W)</th>
<th>Location</th>
<th>Qty</th>
<th>Total Quiescent power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback slide A</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Translation Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback slide B</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Cam Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback Cam A</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Cam Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback Cam B</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Cam Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback Cam C</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Cam Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback Cam D</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Cam Motor</td>
<td>270</td>
<td>5.3</td>
<td>Strongback Cam E</td>
<td>33</td>
<td>174.9 none</td>
</tr>
<tr>
<td>Undulator motion IOC</td>
<td>7</td>
<td>7</td>
<td>Strongback</td>
<td>33</td>
<td>231 B</td>
</tr>
<tr>
<td>Diag motor 1</td>
<td>270</td>
<td>5.3</td>
<td>Long break</td>
<td>11</td>
<td>58.3 none</td>
</tr>
<tr>
<td>Diag motor 2</td>
<td>270</td>
<td>5.3</td>
<td>Long break</td>
<td>11</td>
<td>58.3 none</td>
</tr>
<tr>
<td>Diag motor 3</td>
<td>270</td>
<td>5.3</td>
<td>Long break</td>
<td>11</td>
<td>58.3 none</td>
</tr>
<tr>
<td>Diag motor 4</td>
<td>270</td>
<td>5.3</td>
<td>Long break</td>
<td>11</td>
<td>58.3 none</td>
</tr>
<tr>
<td>Diag motor 5</td>
<td>270</td>
<td>5.3</td>
<td>Long break</td>
<td>11</td>
<td>58.3 none</td>
</tr>
<tr>
<td>Diag motor IOC</td>
<td>7</td>
<td>7</td>
<td>Long break</td>
<td>11</td>
<td>77 D</td>
</tr>
<tr>
<td>Photo Multiplier</td>
<td>5</td>
<td>5</td>
<td>2 per each Strongback</td>
<td>66</td>
<td>330 C</td>
</tr>
<tr>
<td>Photo diode radiation loss system</td>
<td>5</td>
<td>5</td>
<td>Each strongback</td>
<td>33</td>
<td>165 C</td>
</tr>
<tr>
<td>Camera motor</td>
<td>100</td>
<td>5</td>
<td>Long break</td>
<td>11</td>
<td>55 none</td>
</tr>
<tr>
<td>Camera</td>
<td>6</td>
<td>6</td>
<td>Long break</td>
<td>11</td>
<td>66 none</td>
</tr>
<tr>
<td>Charge Monitor</td>
<td>0</td>
<td>0</td>
<td>Entrance & Exit</td>
<td>2</td>
<td>0 none</td>
</tr>
<tr>
<td>Quad Magnet</td>
<td>34.6</td>
<td>34.6</td>
<td>Each Strongback</td>
<td>33</td>
<td>1141.8 none</td>
</tr>
<tr>
<td>Corrector Magnet</td>
<td>0.2</td>
<td>0.2</td>
<td>2 per each Strongback</td>
<td>66</td>
<td>13.2 none</td>
</tr>
<tr>
<td>BPM down-converter</td>
<td>20</td>
<td>20</td>
<td>Each Strongback</td>
<td>33</td>
<td>660 A</td>
</tr>
<tr>
<td>Beam Finder Wire sensor electronics</td>
<td>5</td>
<td>5</td>
<td>Each Strongback</td>
<td>33</td>
<td>165 B</td>
</tr>
</tbody>
</table>

Totals: 3439.8

168.4 Entire tunnel power consumption: 4749.8

Tunnel Length (m): 135

Watts/meter: 35.1837037

Stuff added 10/24/05:
- HLS: 3W/m
- WPM: 800w in two places