Status of Electron Beam Diagnostics
January 19, 2004

- Review of electron beam diagnostics in the context of undulator commissioning
- Electron beam commissioning in readiness for undulator tests
- Electron beam diagnostics during FEL tuning
Electron beam characterization

- Measurement of 6D phase space
 - Transverse emittance
 - x, y only - no special effort made to measure coupling
 - round beams and no intentionally rolled beam lines
 - Bunch length and energy spread

- Beam centroid measurements
 - Energy
 - Is absolute energy calibration essential?
 - Only as good as bend field strength calibration, e.g. in the dump line.
 - Beam orbit
 - Requirement for absolute position measurement
 - Versus relative orbit – use beam based alignment
Electron beam monitoring

- Electron beam changes due to FEL
 - Beam energy due to ISR
 - Energy spread from SASE
 - Microbunching not directly observable, except through x-ray spectrum

- Beam drifts due to upstream changes

- Minimize changes with feedback
 - Changes are never zero,
 - even with perfect feedback in a dynamic system

- Monitor pulse-to-pulse jitter in the beam

- Monitor instabilities in the beam
 - Diagnose CSR microbunching
Status of beam position monitors

- **Injector-Linac-LTU**
 - Stripline bpms
 - 0.2 – 1 nC
 - 5 μm resolution
 - Requires new modules
 - To be designed.
 - New stripline BPMs to be fabricated for chicanes
 - 20 um res. for 1 - 0.2 nC in a 3 cm x 10 cm chamber
 - New stripline BPMs to be fabricated for the LTU in addition to existing FFTB BPM
 - Last 8 LTU BPMs redundant with undulator-style cavity BPMs
 - 1 um resolution at 0.2 nC

- Aligned to mechanical center of quadrupoles
- Systematic offsets from variations in d
Cavity beam position monitors in the undulator and LTU
R&D at SLAC – Steve Smith

- Raw digitizer records from beam measurements at ATF

- X-band cavity shown
- Dipole-mode couplers
SLAC X-band cavity BPM – Steve Smith

Mechanical center of RF BPM well correlated to electrical center – more accurately than for stripline BPMS
Cavity BPM R&D at SLAC – Steve Smith
preliminary beam calibration data from a C-band cavity at ATF

- cavity BPM signal versus predicted position
- bunch charge 1.6 nC

- plot of residual deviation from linear response
- << 1 µm LCLS resolution requirement
BPM Controls issues

- **Timing pulse identification**
 - Allows all BPMs to be read on the same beam pulse
 - Single pass machine each pulse is different
- **120 Hz readback**
- **Ring buffer for all BPM readings extending back last ~1000 pulses**
 - MPS trips can be traced to orbit excursion
 - RMS orbit jitter can be historied every ~1000 pulses
- **Application software linked to optics model**
 - Real-time orbit fitting displays
Beam size monitors

Wire scanners

- Used throughout SLC, essentially noninvasive
- Technical challenges are
 - Small beam size dictates small wire
 - Range of beam charge 0.2 – 1 nC,
 - compromise between signal to noise and saturation
 - Signal to noise from linac dark current
 - Low beam charge operation dictates high Z wire material
 - Beam loss considerations in front of undulator dictates low Z
- Groups of 4 wire scanners for emittance reconstruction
- Measure average, projected emittances in x and y
- Matching section at end of LTU verifies emittance and beta match at undulator entrance
- However, no room in the dump beam line for zero dispersion location
Beam size monitor locations

![Diagram of beam size monitor locations with labels such as L0, L1, L2, L3, LTU, Dump, and sigma notation (\(\sigma_E\)) with specific values and equations for \(\gamma_\varepsilon_{x,y}\) and \(\gamma_\varepsilon_y = 1.5 \mu m\).]

4-wire emittance reconstruction example from linac sector 2

Undulator Diagnostics & Commissioning Workshop
UCLA, January 19-20, 2004
Beam size monitors

Profile monitors

- Except for injector, use thin foil OTR screens
- Technical challenges are
 - Small beam size requires precision, remote optics + digital video ($’s)
 - Stretching a thin, low Z foil flat
- Measure single pulse x & y beam profiles
- Acts as emittance spoiler, but beam still transported to dump
- Energy spread profile in high dispersion locations
 - Injector inflector, chicanes, LTU dogleg, dump line
- Single pulse slice emittance diagnostic (invasive)
 - in conjunction with transverse RF deflecting cavity
Slice parameters from transverse RF deflecting cavity

- OTR screen down stream of the Tcav. can be used in conjunction with a quadrupole scan to measure horizontal slice emittance

- OTR screen down stream of the Tcav. At a horizontal dispersion location, large η_x, small β_x, can measure slice energy spread
Profile Monitors

Technical challenges

- Small beam size requires precision, remote optics + digital video ($'s)
- Stretching a thin, low Z foil flat
- Avoiding punctures
- Block synchrotron radiation from bends bends bends with polarizers

SPPS BC chicane measured energy spread

SR background
Profile Monitors for Synchrotron Radiation

- single shot projected energy spread
- Generated from vertical chicane wiggler in a horizontal dispersion region
- ISR strikes an off-axis screen
- Optical resolution set by divergence of x-rays, filter out low energy x-rays with foil and use thin fluorescent crystal

Also serves as CSR monitoring port
Synchrotron Radiation:

- Lattice optimized for high ΔE
 resolution: low β_x, high η_x
- real-time, noninvasive energy spread monitor
- single shot projected energy spread

Compared to energy spread at dump spectrometer
Conventional diagnostics and their upgrades

Beam Phase Monitors
- Use linac style S-band monitor cavities
- Measure pulse-to-pulse phase jitter
- Subject to thermal drift so can’t use for feedback control of phase
 - Thermal stabilization technology (as required for the undulator) may make this possible in the future.
- Beam phase can be measured w.r.t.
 - RF distribution
 - Laser from injector or at experiment
Collimation and Machine Protection System

Collimation
- Movable energy collimator in each chicane
 - Diagnostic, and later for foil slits
- Pair of adjustable energy collimators in the dog-leg bend of the LTU
- Three x & y adjustable collimators in the matching section of the LTU
 - Two betatron phases and one clean-up in each plane

Beam Loss Monitors
- PLIC cables along the length of the undulator
- Protection Ion Chambers at
 - collimation section in LTU
 - Between undulator modules
Linac To Undulator beamline diagnostic & collimation section

- Linac To Undulator beamline diagnostic & collimation section
- Single Bunch Beam Dumper
- Insertable Tune-Up Dump
- 3 betatron collimators per plane

Highlighting:
- β_x (black)
- β_y (green)
- η_x (blue)
- η_y (red)
Beam Rate Limiting

- **Single bunch beam dumper (SBBD)**
 - Linac beam up to the dog-leg bend in the LTU can be maintained at 120 Hz
 - Favorable for upstream stability and feedback operation
 - Pulsed magnet allows
 - Single shot, 1 Hz, 10 Hz, 120 Hz down the LTU line
 - Failure in pulsed magnet will turn off beam at gun

- **Tune-up dump at end of LTU**
 - Optional second stopper at end of dummy line (radiation?)
 - Max. 10 Hz to tune-up dump
 - Stopper out will arm MPS for stopping beam with the SBBD
Conditions that will stop the beam at the SBBD

- Tune-up dump at end of LTU is out, and:
- Beam loss at detected by either by PLIC along the undulator chamber, or by the PIC’s between the undulator modules
- Invalid readings from undulator
 - Vacuum
 - Magnet movers
 - BPMs
- Energy error in the LTU
- PIC’s at the collimators
- Launch orbit feedback failing
- Magnet power supplies for some key elements
Bunch Length Measurement

Absolute bunch length profile measurements
- RF transverse deflecting cavity
 - 1 Hz pulse stealing
 - 3 pulse measurement
- Electro optic longitudinal profile and timing measurement
 - Single pulse
- Autocorrelation measurement from CTR
 - Average, 2nd moment

Relative measurements of rms bunch length
- THz power level measurements from Coherent TR, DR, SR
 - Prompt, single pulse
- Longitudinal wakefield energy loss
 - Invasive, fast scan
Relative bunch length measurement at SPPS based on wakefield energy loss scan

Energy change measured at the end of the linac

as a function of the linac phase (chirp) upstream of the compressor chicane

Shortest bunch has greatest energy loss

Predicted wake loss \(V_{\text{RTL}} = 42.0 \text{ MV}, V_{\text{sim}} = 42.0 \text{ MV}, N = 1.85 \times 10^{10} \)

Predicted shape due to wake loss plus RF curvature

Energy Loss (MeV)

pre-chicane rf phase, \(\langle \phi \rangle \) (degrees S-band)

Rms bunch length (\(\sigma_z \))
Far-Infrared Detection of Wakefields from Ultra-Short Bunches

- Wakefield diffraction radiation
- Wavelength comparable to bunch length
- Pyroelectric detector
- GADC

Comparison of bunch length minimized according to wakefield loss and THz power

- Linac phase
- Wake energy loss
- THz power

Pyrometer signal [arb. units]
- Linac phase offset from crest [deg. S-Band]

- Linac Wake Loss
- FFTB Pyrometer Signal
Absolute bunch length determination

- **Average bunch length from CTR autocorrelation**
 - Radiation from the OTR screen is focused into an interferometer
 - One arm of interferometer is movable, so two profiles are swept through each other
 - Measured bunch length is calibrated in microns of arm motion
 - Averaged over many pulses, so integrates any bunch length jitter

Graphical Illustration

- Diagram showing interferometer setup with OAP, S1, S2, M1, M2, D1, and D2.
- Mylar window indicated.
- Scatter plot showing D2/D1 ratio with fitted line.
- Text: M. Hogan, P. Mugli, SPPS, 48 fs rms.
CTR Measurements

Technical challenges

- Intercepting thin foil (OTR) versus foil with hole (ODR)

- **Wavelength response of vacuum window**
 - Fused silica
 - Mylar foil vacuum window
 - Window diameter

- **Wavelength response of water vapor**
 - Dry nitrogen blanket

- **Detecting power at several wavelengths**
 - Tune to arbitrary bunch length, not the minimum bunch length
CSR THz radiation from diagnostic chicane

- THz spectral power diagnoses relative bunch length
- CSR spectrum reveals spikes in bunch length distribution
- Spikes due to microbunching instability arising in the BC chicanes also seen in CSR spectrum

Z. Huang: expect to observe microstructure at $\lambda_0/\text{comp.fact}$
Bunch Length Measurements with the RF Transverse Deflecting Cavity

Bunch length reconstruction
Measure streak at 3 different phases

\[
\sigma_y^2 = A \phi_{rf}^2 + B, \quad \sigma_z = \frac{\lambda_{rf} \sqrt{A}}{4C}
\]

Asymmetric parabola indicates incoming tilt to beam

Undulator Diagnostics & Commissioning Workshop
UCLA, January 19-20, 2004

Patrick Krejcik, LCLS
pkr@slac.stanford.edu
Calibration scan for RF transverse deflecting cavity

Beam centroid [pixels]

Cavity phase [deg. S-Band]

\[A = 3.848 \quad \text{STD DEV} = 8.818 \quad \text{RMS FIT ERROR} = 3.116 \]

- Bunch length calibrated in units of the wavelength of the S-band RF
- Further requirements for LCLS:
 - High resolution OTR screen
 - Wide angle, linear view optics
Bunch length and timing diagnostics

Absolute bunch length determination

- **Single shot electro optic pump probe measurement**
 - Transforms the problem of measuring short electron bunch length to measuring a short pulse of laser light.
 - Electro-optic process is inherently fast, < 2 fs
 - Time resolution is dependant on crystal geometry and laser BW
 - Investigating two geometries at SPPS
 - Femtosecond laser systems are complex
 - Innovation at SPPS is transport a compressed beam to the e- beamline with a long fiber
Electro Optic Bunch Length Measurement

Geometry chosen to measure direct electric field from bunch, not wakefield
Modelled by H. Schlarb
Resolution limit in temporal-to-spectral translation

\[T_{\text{res}} = \sqrt{T_0 T_C} \]

However, recent work shows this limit can be overcome with noncollinear cross correlation of the light before and after the EO crystal

S.P. Jamison, Optics Letters, 28, 1710, 2003
Temporal to spatial geometry under test at SPPS

- **Elevation view**
 - Electrons
 - EO Xtal

- **End view**
 - EO Xtal

- **Plan view**
 - Polarizer
 - Analyzer
 - Xtal

Principal of temporal-spatial correlation

Line image camera analyzer

Undulator Diagnostics & Commissioning Workshop
UCLA, January 19-20, 2004

Patrick Krejcik, LCLS
pkr@slac.stanford.edu
SPPS Electro Optic bunch length measurements – Adrian Cavalieri et al

Spatial profile of beam focused along time axis, total sweep only several picoseconds

Principal of temporal-spatial correlation

- polarizer
- analyzer
- xtal
- Line image camera

6 ps

Patrick Krejcik, LCLS
pkr@slac.stanford.edu
SPPS - EO signal vs time and single bunch – Adrian Cavalieri et al

- 0.5 mm ZnTe crystal

Principal of temporal-spatial correlation

- multiple peaks indicate multiple rotations of polarization vector

0.3 mm ZnTe crystal
SPPS - time sequence of multiple EO images

Principal of temporal-spatial correlation

EO xtal
Line image camera
Analyzer
Polarizer

Optical delay

E_t
SPPS - time sequence of multiple EO images

Principal of temporal-spatial correlation

Line image camera

EO xtal

Wollaston prism

Polarizer

Optical delay

Note wakefields after passage of the bunch
EO resolution limit due to wakefields – H. Schlarb

- Apparent change in σ_z when measured at increasing radii relative to the aperture from the edge of the laser mirror.
- Negligible perturbation if EO crystal is closer to beam than mirror edge.
Feedback implementation

- **Pulse-to-pulse control of**
 - Orbit position & angle, energy
 - as in SLC
 - beam phase,
 - Necessary, for example, to measure orbit after RF deflecting cavity to maintain cavity at zero phase crossing
 - bunch length
 - Use relative signal strength from OTR THz spectral power measurement
 - Demonstrated at SPPS with dither feedback to minimize bunch length
 - Needs power measurement at several THz wavelengths to tune to arbitrary bunch lengths
 - Decouple longitudinal feedback requirements
 - Energy feedback maintains constant energy at the BC chicane
 - Bunch length feedback controls the linac phase (energy chirp)
Energy feedback at SPPS chicane responding to a step energy change

Energy measured at a dispersive BPM, Actuator is a klystron phase shifter

Energy jitter measured from chicane feedback system 5.6 MeV rms 0.06%
Dither feedback control of bunch length minimization - L. Hendrickson

Bunch length monitor response

Feedback correction signal

Dither time steps of 10 seconds

Linac phase

Jitter in bunch length signal over 10 seconds ~10% rms
Conclusions

- Upgrades to conventional diagnostic instrumentation
- We rely on several new and complex bunch length and timing diagnostics
 - Development work on these has started at SPPS
- Feedback is an essential part of maintaining stable tuning
- MPS is integrated into diagnostics and feedback requirements