Measurements of Short Bunches at SPPS and E-164X

P. Muggli (USC)
M.J. Hogan, C.D. Barnes, D. Walz, R. Siemann
P.J. Emma, P. Krejcik (SLAC)
H. Schlarb, R. Ischebeck (DESY)
• Motivation

• CTR Interferometry*

• Bunch energy spectrum measurements

• Application to E-164X

• Conclusions

MOTIVATIONS

• Length of SLAC ultra-short bunches was never measured!

• In E-164X plasma wakefield acceleration (PWFA) experiment, the accelerating gradient increases as $1/z^2$ with matching plasma density increasing as $1/z$

• Bunch incoming energy spectrum and CTR energy varies significantly from bunch to bunch (especially at 1 Hz rep. rate)

• Outcome of E-164X …
• **Optical Transition Radiation (OTR)**
 - Spatial resolution \(\approx 100 \, \mu m \)
 - Energy resolution \(\approx 30 \, \text{MeV} \)

EXPERIMENTAL SET UP

- Li Plasma Gas Cell: \(H_2, \text{Xe}, \text{NO} \)
 - \(n_e \approx 0-10^{18} \, \text{cm}^{-3} \)
 - \(L \approx 2.5-20 \, \text{cm} \)

- Cherenkov Radiator
 - Spatial resolution \(\approx 100 \, \mu m \)
 - Energy resolution \(\approx 30 \, \text{MeV} \)

- Cherenkov (aerogel)

- X-Ray Chicane
 - Energy resolution \(\approx 60 \, \text{MeV} \)

- Coherent Transition Radiation and Interferometer

- Optical Transition Radiators
 - 1:1 imaging, spatial resolution \(\approx 9 \, \mu m \)

- Energy Spectrum “X-ray”

- Plasma light

- Imaging Spectrometer
 - 25m

- Injected Current
 - \(N = 1.8 \times 10^{10} \)
 - \(E = 28.5 \, \text{GeV} \)
 - \(\Delta E = 20-12 \, \mu m \)

Since E-162:

- Plasma Light

- X-Ray Diagnostic, e-/e+ Production

P. Muggli, XFEL 2004, SLAC 07/29/04
Transition Radiation (TR) becomes Coherent (CTR) for $\frac{a}{z} > 1$, with intensity $\approx N^2/z$, N the number of e-/bunch of length z.

- CTR spectrum extends from for $\frac{a}{z} < 1$ (i.e., broad spectrum in the IR/FIR).

- CTR spectrum amplitude given by the bunch form factor $f(\omega)$, i.e, the Fourier transform of the longitudinal charge distribution squared (neglecting transverse variations, in the forward direction of observation).

$$ I_{\text{total}}(\omega) = N I_e(\omega) \left[1 + \left(N \frac{1}{\omega} f(\omega) \right)^2 \right] $$

\ll for $\frac{a}{2\pi c/z}$

$I_e(\omega) = |E(\omega)|^2$, the TR for a single electron

$$ f(\omega)^2 = e^{\left(\omega a z / c\right)^2} \text{ for } E_r(z) $$

(Gaussian bunch)

$$ n(z) = \frac{1}{\sqrt{2\pi a^2 z^2}} e^{-z^2/2a^2} $$

- CTR carries longitudinal bunch shape information at long $\frac{a}{z}$'s.

P. Muggli, XFEL 2004, SLAC 07/29/04
• Radiation field in the 2 arms of the interferometer with a time of flight difference $\Delta = 2\Delta z/c$:

$E_{\text{ref.}} = RTE(t)$

$E_{\text{var.}} = TRE(t + 2\Delta / c)$

T, R transmission and reflection coeff. of beam splitter

Note: $T = T(\omega)$, $R = R(\omega)$!

• Intensity $I_D = (E_{\text{ref.}} + E_{\text{var.}})^2$ on autocorrelator detector:

$$I_D(t; \Delta) = 2 \int |RTE(t)|^2 \, dt$$

Background $+ 2 \int RT^2 E(t)E(t + 2\Delta / c) \, dt$

Interferogram/autocorrelation
For each d_1 or Δz, measure the energy: $S_D(\Delta z) = \iint I_D(t; \Delta z) \, dt \, ds$

Autocorrelation signal characteristics:
- Symmetric (even if the bunch shape is not)
- Background=“2”, peak=“2”+”2”, contrast of 2
- Extends to long wavelengths, i.e., to long delays (CTR)
- FFT(interferogram) => bunch spectrum
- requires multiple (similar) bunches

Pros and cons of CTR Interferometry
- Simple and inexpensive (<$10k$)
- No sophisticated timing required
- Symmetric trace
- Multi-bunch measurement
- Requires knowledge of broadband response of the entire system
CTR MICHELSON INTERFEROMETER

- Interference signal normalized to the reference signal
- Motion resolution $\Delta z_{\text{min}} = 1 \, \mu\text{m}$ or $\approx 14 \, \text{fs}$ (round trip)
- Mylar: $R \approx 22\%$, $T \approx 78\%$, $RT \approx 0.17$

$e^-\Delta z\text{e}^-$

$1 \, \mu\text{m} \text{ Titanium Foil at } 45^\circ$

$\square_x = 60 \, \mu\text{m}, \, \square_y = 170 \, \mu\text{m}$

$N \approx 1.9 \times 10^{10} \, e^-$

Alignment Laser

Reference Pyro Detector

Variable Position Mirror Δz

Interferometer Pyro Detector

12.5 μm Mylar
1mm HDPE Vacuum Window (3/4” dia)

12.5 μm Mylar Beam Splitters $R \approx T \approx 0.17$

$1 \, \mu\text{m}$ Laser

$1 \, \mu\text{m}$ Titanium Foil at 45°

$R \approx 22\%$, $T \approx 78\%$, $RT \approx 0.17$

$N \approx 1.9 \times 10^{10} \, e^-$

$\Delta z_{\text{min}} = 1 \, \mu\text{m}$ or $\approx 14 \, \text{fs}$ (round trip)
• Trace is symmetric (even if the bunch shape may not be)
• Peak/background ratio = 2
• Large “dips” on either sides of the peak
• Modulation far from the peak
Interferometer “transmission” can be affected by: *(amplitude and phase)

- Water absorption in humid air
- Vacuum window size cut-off (long l)
- Interferometer optics aperture (long l)
- Pyro-electric detector resonances
- Beam splitter(s)/window Fabry-Perot resonances

BEAMSLITTER R & T, 45°

Thickness \(d \)

Index of refraction \(n \)

Angle of incidence 45°

\[
R(\square) = \frac{1}{1 - r} e^{i\square} \frac{1}{1 - r^2 e^{i\square}}
\]

\[
T(\square) = \left(1 - r^2\right) e^{i\square/2} \frac{1}{1 - r^2 e^{i\square}}
\]

\[
r_{\perp}(\square) = \frac{1}{1 + \sqrt{2n^2 - 1}}
\]

\[
r_{//}(\square) = \frac{n^2}{n^2 + \sqrt{2n^2 - 1}}
\]

Mylar: \(n=3, n=n(\square) \)?

- Include in a simple autocorrelation calculation
- Interferometer delay \(\Delta z \) or \(d \) => relative phase shift \(2k\Delta z \)
Mylar Fabry-Perot

Simple model:
Gaussian, $\sigma_z=20 \mu m$, $d=12.7 \mu m$, $n=3$ Mylar window+splitters

- Fabry-Perot resonance: $\square=2d/nm$, $m=1,2,…$, n=index of refraction
- Signal attenuated by Mylar beam splitter: $(RT)^2$
- Modulation/dips in the interferogram
- Smaller measured width: $\square_{\text{Autocorrelation}} < \square_{\text{bunch}}$
CORRECTED GAUSSIAN WIDTH

NDR compressor voltage: 41.8 MV/m, 2-6BNS phase -19°

Autocorrelation:

\[z \approx 9 \, \mu m \]

Gaussian Bunch

\[z \approx 18 \, \mu m \]

or

\[\approx 120 \, fs \]
FFTBR_{56} DEPENDENCY

- Measurable, but weak dependency
- Variations masked by beamsplitter transmission characteristics

- \(z \approx 17 \mu m \) or 114 fs (corrected)
- \(z \approx 13 \mu m \) or 86 fs
- \(z \approx 11 \mu m \) or 74 fs
MYLAR EFFECT
(Example)

Beam current profiles for PWFA

- Beamsplitter “filtering” masks beam profile features

\[z_{za} \approx 108 \, \mu m \]
\[\approx 47 \, \mu m \]
\[\approx 47 \, \mu m \]
CTR AMPLITUDE DEPENDENCY
@ PEAK COMPRESSION

- Amplitude variations are clear(er)
- Amplitude related to bunch current profile

Gaussian Bunch:

\[E_{\text{CTR}} \approx \frac{N^2}{\sigma_z} \]
e- BUNCH MANIPULATION

\begin{itemize}
 \item Energy spectrum <-> phase space <-> current profile
 \item \(z \) does not fully describe the bunch shape
\end{itemize}

\textit{P. Muggli, XFEL 2004, SLAC 07/29/04}
SLC ENERGY SPECTRUM MONITOR USING SYNCHROTRON RADIATION

J. Seeman, W. Brunk, R. Early, M. Ross, E. Tillmann and D. Walz
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

• Measure incoming bunch energy spectrum using "x-ray chicane" (C. Barnes PhD)

X-Ray Spectrometer Schematic

Spectrometer Chicane Magnet

Scintillate Detector
EXPERIMENTAL SET UP

- X-ray Chicane
 - Energy resolution ≈ 60 MeV

- Optical Transition Radiation (OTR)
 - 1:1 imaging, spatial resolution ≈ 9 µm

- Cherenkov (aerogel)
 - Spatial resolution ≈ 100 µm
 - Energy resolution ≈ 30 MeV

Since E-162:

- Energy Spectrum "X-ray"
- Coherent Transition Radiation and Interferometer
- Optical Transition Radiators
- Imaging Spectrometer
- X-Ray Diagnostic, e-/e⁺ Production
- Cherenkov Radiator Dump
- Plasma Light

P. Muggli, XFEL 2004, SLAC 07/29/04
BUNCH COMPRESSION & ENERGY SPECTRA

- Pyro amplitude is ambiguous
- Energy spectra are not
- They are complimentary
- Clear correlation between Energy spectrum and E-164X outcome

P. Muggli, XFEL 2004, SLAC 07/29/04
E164X:
A Plasma Wakefield Acceleration Experiment

Stanford Linear Accelerator Center

C. E. Clayton, C. Huang, C. Joshi, D. Johnson, W. Lu, K. A. Marsh, W. B. Mori

University of California, Los Angeles

S. Deng, T. Katsouleas, P. Muggli, E. Oz

University of Southern California, Los Angeles

P. Muggli, XFEL 2004, SLAC 07/29/04
• Plasma wave/wake excited by a relativistic particle bunch
• Plasma e\(^{-}\) expelled by space charge forces \(\Rightarrow\) energy loss + focusing
• Plasma e\(^{-}\) rush back on axis \(\Rightarrow\) energy gain

• Linear scaling:
\[
E_{\text{acc}} \propto 110 (\text{MeV/m}) \frac{N/2 \cdot 10^{10}}{(\Box_z / 0.6 \text{mm})^2} \approx \frac{1}{\Box_z^2} @ k_{pe}\Box_z \approx \sqrt{2}
\]

• Plasma Wakefield Accelerator (PWFA) = Transformer Booster for high energy accelerator

• At \(n_e = 2.6 \times 10^{17} \text{ cm}^{-3}\): \(f_{r}\approx 4.5 \text{ THz}\) accelerator
 \(E_{\text{acc}} \approx 40 \text{ GV/m, } B_{\parallel} \approx 8 \text{ MT/m}\)
Energy loss correlates with CTR energy ($1/z$)

Peak energy gradient 3.4 GeV/10 cm! (or 34 GeV/m!)

$\mathbf{P.\ Muggli,\ XFEL\ 2004,\ SLAC\ 07/29/04}$

$n_e \approx 2.55 \times 10^{17} \text{ cm}^{-3}$

$L \approx 10 \text{ cm}, \ N \approx 1.8 \times 10^{10}$

$\langle \frac{1}{z} \rangle \approx 2.55 \times 10^{-17} \text{ cm}^{-3}$

Peak energy gradient 3.4 GeV/10 cm! (or 34 GeV/m!)

$\mathbf{U\ C\ L\ A}$
Results

- Energy gain reaches $\approx 3+1$ GeV or ≈ 40 GeV/m
- $\approx 7\%$ of charge or ≈ 200 pC with $E>E_0$
- Energy gain depends on the details of the incoming beam (x,y,z)

$\rho \approx 2.55 \times 10^{17}$ cm$^{-3}$, $L \approx 10$ cm

$N \approx 1.8 \times 10^{10}$

$E_{\text{gain}} \approx 3 \text{ GeV}!$

$U \ C \ L \ A$

P. Muggli, XFEL 2004, SLAC 07/29/04
CONCLUSIONS

• First and only(?) measurement of SLAC short bunches
• CTR interferometry shows bunches as short as 74 fs, but …
• Beam splitter Fabry-Perot alters the measurement and CTR has limitations: multiple bunches, symmetric
• Short bunch confirmed by ionization of Li, NO, Xe, and H$_2$
• Measure single bunch energy spectrum to retrieve profile/current distribution
• CTR interferogram and amplitude, and bunch spectrum are key for E-164X and future E-…
• CTR interferometer can be improved: thinner Mylar splitter, vacuum box, …
• Retrieve/incorporate bunch current profiles: in CTR and E-164X, work in progress …