Magnetization switching without charge or spin currents

J. Stöhr, 1,2,a) H. C. Siegmann, 2 A. Kashuba, 3 and S. J. Gamble 2,4
1Stanford Synchrotron Radiation Lightsource, Stanford, CA 94305, USA
2PULSE Center, Stanford University, Stanford, CA 94025, USA
3Bogolyubov Institute for Theoretical Physics 14-b, Metrolohichna Str., Kiev 03680, Ukraine
4Department of Applied Physics, Stanford University, Stanford, CA 94305, USA

(Received 1 December 2008; accepted 25 January 2009; published online 18 February 2009)

We propose schemes of reversing the magnetization of a ferromagnet by electric fields alone, without charge or spin currents or external magnetic fields. The switching is triggered by picosecond manipulation of the atomic positions or subpicosecond distortion of the valence charge distribution, which through spin-orbit coupling modifies the magnetic anisotropy. We discuss how such time-even anisotropies can be used to switch the time-odd magnetization for in-plane and out-of-plane magnetization directions. In all cases the switching process is completely determined by the appropriately chosen orientation, magnitude, and temporal length of the electric field created by a voltage or photon pulse. © 2009 American Institute of Physics. [DOI: 10.1063/1.3081421]

Conventional switching of the magnetization of a ferromagnet (FM) between two opposite directions is initiated by the torque due to an applied magnetic field generated by current flow through wires. More recently, it has been demonstrated that in nanoscale magnetic cells the switching torque may also be generated by spin polarized currents. In the pursuit of smaller and faster switching devices, Ohmic heating has become a technological obstacle, and the demonstration of currentless reversal of the magnetization by an electric field \(\vec{E} \) has emerged as a challenge. Besides constituting an interesting scientific topic, \(\vec{E} \)-field induced switching may avoid energy dissipation by current flow and overcome impedance induced speed limitations in triggering the switching process. It may therefore extend switching speeds into the femtosecond regime. While it has been demonstrated that electric fields can influence the direction of magnetization, magnetization reversal has so far proven elusive. \(\vec{E} \)-field effects may also play a role in “all-optical switching,” where electromagnetic fields have been employed to reverse the magnetization.

Similar to anisotropic ligand fields, which may create a preferred magnetic anisotropy axis in single crystal FMs, in principle, applied electric fields can also create a magnetic anisotropy axis. Once a dominant new anisotropy axis is created, the magnetization \(\vec{M} \) will move into the direction determined by its projection along the new axis by precession and damping. Such manipulation of the magnetization in response to an \(\vec{E} \)-field modified anisotropy has been observed in \(\text{Co}_{90}\text{Fe}_{10} \) exchange coupled to the AFM axis in multiferroic \(\text{BiFeO}_3 \). Others observed some electric field modification of \(\vec{M} \) in a ferromagnetic semiconductor or at an electrolytic interface. In all cases the \(\vec{E} \)-field controlled rotation of \(\vec{M} \) was however limited to \(\approx 90^\circ \) and does not correspond to the desired “switching” or magnetization reversal, i.e., a 180° rotation of \(\vec{M} \). The key distinction between \(\approx 90^\circ \) rotation and switching arises from the intrinsically incompatible symmetry properties of linear electric fields, which are parity-odd and time-even, and the parity-even and time-odd properties of magnetic fields and angular momenta, the key vectors in magnetism. Since the switched magnetic state corresponds to the time reversed original state, time-even \(\vec{E} \)-fields alone cannot create a switched state.

Here we propose a way out of this dilemma. Our concept is based on the use of an \(\vec{E} \)-field pulse that in conjunction with the spin-orbit coupling and exchange interaction creates a transient new magnetic anisotropy axis and associated time-odd anisotropy field that triggers the switching process. In practice, the key time of the switching process is the “writing time” during which the magnetization is put into an excited state from which it deterministically decays into the reversed state. The writing time can be much shorter than the “switching time,” allowing the parallel processing of bits. Here we discuss the reversal of either the in-plane or out-of-plane magnetization and propose two schemes based on either picosecond voltage pulses or femtosecond photon pulses. In both cases the switching process is initiated and predetermined by the orientation, magnitude, and temporal length of the \(\vec{E} \)-field writing pulse.

In principle, the application of an oriented and strong \(\vec{E} \) field can induce a charge anisotropy in a suitably chosen material. In a FM or AFM a charge anisotropy is felt by the atomic moments through the spin-orbit coupling, which turns the charge anisotropy into a magnetic anisotropy. Because \(\vec{E} \) and the spin-orbit coupling (dot product of two time-odd vectors) are time-even, they can only define a magnetic axis, not direction. By symmetry, the \(\vec{E} \)-field induced magnetic easy axis can only be parallel or perpendicular to \(\vec{E} \) and does not depend on the sign of \(\vec{E} \). In the following we shall assume for convenience that the anisotropy axis is induced parallel to \(\vec{E} \). If a sufficiently strong magnetic anisotropy axis has been created, \(\vec{M} \) will align itself along the axis through precession and damping. The alignment direction is determined by the direction of the magnetic anisotropy field \(\vec{H}_E \), which like a real magnetic field determines the motion of \(\vec{M} \). The direction of the time-odd vector \(\vec{H}_E \) along the anisotropy axis depends on that of \(\vec{M} \) and changes sign when \(\vec{M} \) changes

\(\ldots \)
sign. It may be expressed by the general expression \(\vec{H}_E = H_E^0(\vec{e} \cdot \vec{m})\vec{e} \), where \(\vec{e} \) and \(\vec{m} \) are unit vectors along \(\vec{E} \) and \(\vec{M} \), respectively, and the maximum anisotropy field \(H_E^0 \) is related to the anisotropy energy density \(K_E \) by \(H_E^0 = 2K_E/M \).

In Fig. 1, we illustrate the case of an uniaxial FM with magnetization \(\vec{M} \), assuming an in-plane easy axis and an induced magnetic anisotropy axis parallel to \(\vec{E} \).

Since \(H_E = H_E^0 \cos \varphi \), the magnitude of \(H_E \) decreases to zero as the angle \(\varphi \) between \(\vec{H}_E \) and \(\vec{M} \) is increased to \(90^\circ \) and per definition \(\varphi \) cannot exceed \(90^\circ \). Therefore the relaxation of \(\vec{M} \) into the \(\vec{E} \)-field created anisotropy field can never switch the magnetization.

Instead, one may utilize "precessional" or "ballistic" switching of \(\vec{M} \) about \(\vec{H}_E \), as with magnetic field pulses, which is the most economical method of magnetization reversal.\(^1\) Conceptually, the simplest case of \(\vec{E} \)-field induced precessional switching is for a FM with a perpendicular out-of-plane easy axis and no in-plane anisotropy, as illustrated in Fig. 2. If we create a sufficiently strong anisotropy field \(\vec{H}_E \) at an angle \(\theta \) from the out-of-plane easy axis and damping is weak, the torque \(\vec{H}_E \times \vec{M} = H_E^0 M \cos \theta \sin \theta \) will cause \(\vec{M} \) to precess about \(\vec{H}_E \). The torque is largest for \(\theta = 45^\circ \), and for \(\theta > 45^\circ \), \(\vec{M} \) can cross the hard plane of the sample, as indicated by a green line in Fig. 2. In practice, this scheme requires delicate control of the length of the field pulse.

A more favorable case is that of a FM with an in-plane easy axis. This case, illustrated in Fig. 3, also utilizes precessional switching of \(\vec{M} \) about \(\vec{H}_E \). The \(\vec{H}_E \)-field induced torque \(\vec{H}_E \times \vec{M} = H_E^0 M \cos \varphi \sin \varphi \) causes a motion of \(\vec{M} \) out of the plane by an angle \(\alpha \). The out-of-plane precession angle is obtained by use of the Larmor frequency \(\omega \) as \(\alpha = \omega \tau = (\mu_0 H_E^0/2m_e)H_E^0 \cos \varphi \sin \tau \), and the torque is largest for \(\varphi = 45^\circ \). The actual switching process, however, takes place after the field pulse and the induced anisotropy field \(H_E^0 \) have stopped, by precession of \(\vec{M} \) about the out-of-plane demagnetizing field of magnitude \(H_D = -M \sin \alpha/\mu_0 \). After \(\vec{M} \) has precessed about \(\vec{H}_D \) across the hard plane, which is perpendicular to \(x \), the switching process concludes by damping into the new anisotropy field direction \(\vec{H}_D \), as shown. The reverse switching process simply proceeds by a second identical field pulse.

In principle, the switching process in Fig. 3 is triggered and entirely predetermined by properly choosing the \(\vec{E} \)-field direction, magnitude, and pulse length, which is assumed to determine the transient anisotropy field \(\vec{H}_E \). If we denote the ground state in-plane anisotropy energy density by \(K_A = M H_A/2 \) and the out-of-plane anisotropy energy density arising from the demagnetizing field by \(K_D = M^2/2\mu_0 \), the threshold condition for a switch is given by

\[
(K_D + K_A)\sin^2 \alpha \geq K_A.
\]

The energy density deposited during the field pulse, creating the out-of-plane motion of \(\vec{M} \) by \(\alpha \), has to overcome the in-plane uniaxial anisotropy energy density. For small \(\alpha, \varphi = 45^\circ \), and \(g = 2 \), we obtain the switching condition

\[
\mu_0 H_e^0 \tau \geq \frac{2m_e}{e} \sqrt{\frac{K_A}{K_D + K_A}} = \frac{2m_e}{e} \sqrt{\frac{\mu_0 H_A}{M + \mu_0 H_A}}.
\]

For a practical in-plane anisotropy field of \(\mu_0 H_A = 10 \) mT (\(H_A = 100 \) Oe) and a magnetization of \(M = 2 \) T for CoFe alloys, the switching threshold corresponds to \(\alpha \approx 4^\circ \) and \(\mu_0 H_e^0 \tau \geq 0.80 \) T ps so that switching would proceed, for example, if a \(\approx 50 \) ps \(E \)-field pulse induces an anisotropy field \(\mu_0 H_e^0 \approx 20 \) mT. The created demagnetizing field \(\mu_0 H_D = M \sin \alpha/0.14 \) T then rotates the magnetization across the hard plane in 129 ps before it spirals in a damped motion into the new anisotropy field direction \(\vec{H}_D \), as shown in Fig. 3.

The question arises whether, in practice, electric fields can induce anisotropy fields \(H_E^0 \) in FMs that are large and fast enough to satisfy the switching condition (2). In conventional FMs and AFMs it is difficult to significantly change...
the magnetic anisotropy by application of an \(E \)-field because of the small size of magnetoelastic effects. This has lead to the exploration of multiferroics, which may exhibit a coupled electric and magnetic response.7–9 In general, such studies utilize an \(E \)-field to modify atomic positions in an electrically polarizable material, which is either also magnetic or is coupled to a magnetic material. For example, in multiferroic BiFeO\(_3\), which is both ferroelectric and antiferromagnetic, the orientation of the AFM axis can be rotated by directional application of an \(E \)-field.10 The magnetization in an exchange coupled FM then follows the rotation of the AFM axis.2 However, for BiFeO\(_3\) the orthogonal and nontransient nature of the AFM axes prevented true magnetization reversal.

Overcoming this limitation requires the use of a multiferroic with two nonorthogonal AFM axes or a suitably engineered multicomponent system that is coupled to a FM and use of a bipolar field pulse. For example, in the ground state, the FM magnetization would be unidirectionally aligned by application of a bipolar field pulse. For example, in the ground state, the orthogonal and nontransient nature of the AFM axes prevented true magnetization reversal.4 However, for BiFeO\(_3\) the orthogonal and nontransient nature of the AFM axes prevented true magnetization reversal.

Finally, we briefly comment on the energetics of \(H \)-field and \(E \)-field induced switching. To switch the magnetization, the minimum energy needed is given by the magnetic anisotropy energy density \(K_A \). In practice, the intrinsic energy densities stored in the switching fields \(H \) and \(E \), \(\mu_0 H^2/2 \) and \(\varepsilon_0 E^2/2 \), need to exceed \(K_A \) because they have to compensate for losses resulting in undesired heating. \(H \)-field related losses in conventional switching are dominated by Ohmic heating in the coils during \(H \)-field generation. In \(E \)-field switching, losses arise mainly from photon absorption when using electromagnetic wave excitation and from dielectric displacement currents when applying voltage pulses across insulators. The quantitative comparison of losses is complicated by the fact that they depend on the material, geometry, excitation method, and pulse length. The important question of energy dissipation can only be answered after experimental demonstration of \(E \)-field induced switching.

The program of the SSRL/PULSE authors is supported by the Office of Basic Energy Sciences.

\begin{thebibliography}{1}
\end{thebibliography}