Contents

1 Introduction ... 1
 1.1 Magnetism: Magical yet Practical 1
 1.2 History of Magnetism .. 3
 1.3 Magnetism, Neutrons, Polarized Electrons and X-rays 12
 1.3.1 Spin Polarized Electrons and Magnetism 15
 1.3.2 Polarized X-Rays and Magnetism 22
 1.4 Developments in the Second Half of the 20th Century 26
 1.5 Some Thoughts about the Future 30
 1.6 About the Present Book .. 32

Part I Fields and Moments

2 Electric Fields, Currents and Magnetic Fields 41
 2.1 Signs and Units in Magnetism 41
 2.2 The Electric Field ... 41
 2.3 The Electric Current and its Magnetic Field 42
 2.4 High Current Densities .. 47
 2.5 Magnetic and Electric Fields inside Materials 49
 2.6 The Relation of the Three Magnetic Vectors in Magnetic
 Materials ... 51
 2.6.1 Stray and Demagnetizing Fields of Thin Films 54
 2.6.2 Applications of Stray and Demagnetizing Fields 56
 2.7 Symmetry Properties of Electric and Magnetic Fields 59
 2.7.1 Parity ... 59
 2.7.2 Time Reversal ... 61

3 Magnetic Moments and their Interactions with Magnetic
 Fields ... 63
 3.1 The Classical Definition of the Magnetic Moment 63
 3.2 From Classical to Quantum Mechanical Magnetic Moments 66
 3.2.1 The Bohr Magneton ... 67
 3.2.2 Spin and Orbital Magnetic Moments 68
 3.3 Magnetic Dipole Moments in an External Magnetic Field 70
 3.4 The Energy of a Magnetic Dipole in a Magnetic Field 72
Part II History and Concepts of Magnetic Interactions

6 Exchange, Spin-Orbit and Zeeman Interactions 171
 6.1 Overview ... 171
 6.2 The Spin Dependent Atomic Hamiltonian or Pauli Equation . 173
 6.2.1 Independent Electrons in a Central Field 174
 6.2.2 Interactions between two Particles - Symmetrization
 Postulate and Exclusion Principle 176
 6.3 The Exchange Interaction 179
 6.3.1 Electron Exchange in Atoms 179
 6.3.2 Electron Exchange in Molecules 184
 6.3.3 Magnetism and the Chemical Bond 191
 6.3.4 From Molecules to Solids 192
 6.3.5 The Heisenberg Hamiltonian 194
 6.3.6 The Hubbard Hamiltonian 197
 6.3.7 Heisenberg and Hubbard Models for H₂ 199
 6.3.8 Summary and Some General Rules for Electron
 Exchange .. 206
 6.4 The Spin-Orbit Interaction 207
 6.4.1 Fine Structure in Atomic Spectra 207
 6.4.2 Semiclassical Model for the Spin-Orbit Interaction 209
 6.4.3 The Spin-Orbit Hamiltonian 210
 6.4.4 Importance of the Spin-Orbit Interaction 213
 6.5 Hund’s Rules .. 214
 6.6 The Zeeman Interaction 216
 6.6.1 History and Theory of the Zeeman Effect 216
 6.6.2 Zeeman versus Exchange Splitting of Electronic States 222
 6.6.3 Importance of the Zeeman Interaction 224

7 Electronic and Magnetic Interactions in Solids 227
 7.1 Chapter Overview .. 227
 7.2 Localized versus Itinerant Magnetism: The Role of the
 Centrifugal Potential 229
 7.3 The Relative Size of Interactions in Solids 236
 7.4 The Band Model of Ferromagnetism 240
 7.4.1 The Puzzle of the Broken Bohr Magneton Numbers . 240
 7.4.2 The Stoner Model 242
 7.4.3 Origin of Band Structure 246
 7.4.4 Density-Functional Theory 249
 7.5 Ligand Field Theory .. 252
 7.5.1 Independent-Electron Ligand Field Theory 254
Part III Polarized Electron and X-Ray Techniques

8 Polarized Electrons and Magnetism

8.1 Introduction

8.2 Generation of Spin Polarized Electron Beams

8.2.1 Separation of the Two Spin States

8.2.2 The GaAs Spin-Polarized Electron Source

8.3 Spin Polarized Electrons and Magnetic Materials: Overview of Experiments

8.4 Formal Description of Spin Polarized Electrons

8.4.1 Quantum Behavior of the Spin

8.4.2 Single Electron Polarization in the Pauli Spinor Formalism

8.4.3 Description of a Spin Polarized Electron Beam

8.5 Description of Spin Analyzers and Filters

8.5.1 Incident Beam Polarization: Spin Analyzer

8.5.2 Transmitted Beam Polarization: Spin Filter

8.5.3 Determination of Analyzer Parameters

8.6 Interactions of Polarized Electrons with Materials

8.6.1 Beam Transmission through a Spin Filter

8.6.2 The Fundamental Interactions of a Spin Polarized Beam with Matter
8.6.3 Interaction of Polarized Electrons with Magnetic Materials: Poincaré's Sphere 345
8.7 Link Between Electron Polarization and Photon Polarization 350
 8.7.1 Photon Polarization in the Vector Field Representation 351
 8.7.2 Photon Polarization in the Spinor Representation 352
 8.7.3 Transmission of Polarized Photons through Magnetic Materials: Poincaré Formalism 353
 8.7.4 X-Ray Faraday Effect and Poincaré Formalism 356
 8.7.5 Poincaré and Stokes Formalism 358

9 Interactions of Polarized Photons with Matter 359
 9.1 Overview .. 359
 9.2 Terminology of Polarization Dependent Effects 360
 9.3 Semi-Classical Treatment of X-Ray Scattering by Charges and Spins .. 363
 9.3.1 Scattering by a Single Electron 363
 9.3.2 Scattering by an Atom 368
 9.4 Semi-Classical Treatment of Resonant Interactions 369
 9.4.1 X-ray Absorption 369
 9.4.2 Resonant Scattering 372
 9.4.3 Correspondence between Resonant Scattering and Absorption ... 376
 9.4.4 The Kramers-Kronig Relations 377
 9.5 Quantum-Theoretical Concepts 378
 9.5.1 One-Electron and Configuration Pictures of X-Ray Absorption ... 378
 9.5.2 Fermi’s Golden Rule and Kramers-Heisenberg Relation 380
 9.5.3 Resonant Processes in the Electric Dipole Approximation ... 382
 9.5.4 The Polarization Dependent Dipole Operator 384
 9.5.5 The Atomic Transition Matrix Element 386
 9.5.6 Transition Matrix Element for Atoms in Solids 390
 9.6 The Orientation-Averaged Intensity: Charge and Magnetic Moment Sum Rules 393
 9.6.1 The Orientation-Averaged Resonance Intensity 394
 9.6.2 Derivation of the Intensity Sum Rule for the Charge . 395
 9.6.3 Origin of the XMCD Effect 398
 9.6.4 Two-Step Model for the XMCD Intensity 402
 9.6.5 The Orientation Averaged Sum Rules 406
 9.7 The Orientation-Dependent Intensity: Charge and Magnetic Moment Anisotropies 410
 9.7.1 Concepts of Linear Dichroism 410
 9.7.2 X-Ray Natural Linear Dichroism 411
 9.7.3 Theory of X-Ray Natural Linear Dichroism 412
 9.7.4 XNLD and Quadrupole Moment of the Charge 415
10 X-Rays and Magnetism: Spectroscopy and Microscopy . . . 439
10.1 Introduction ... 439
10.2 Overview of Different Types of X-Ray Dichroism 440
10.3 Experimental Concepts of X-Ray Absorption Spectroscopy . 445
10.3.1 General Concepts ... 445
10.3.2 Experimental Arrangements 450
10.3.3 Quantitative Analysis of Experimental Absorption Spectra . 452
10.3.4 Some Important Experimental Absorption Spectra 457
10.3.5 XMCD Spectra of Magnetic Atoms: From Thin Films to Isolated Atoms ... 459
10.3.6 Sum Rule Analysis of XMCD Spectra: Enhanced Orbital Moments in Small Clusters 461
10.3.7 Measurement of Small Spin and Orbital Moments: Pauli Paramagnetism ... 465
10.4 Magnetic Imaging with X-Rays 467
10.4.1 X-Ray Microscopy Methods 468
10.4.2 Lensless Imaging by Coherent Scattering 471
10.4.3 Overview of Magnetic Imaging Results 476

Part IV Properties of and Phenomena in the Ferromagnetic Metals

11 The Spontaneous Magnetization, Anisotropy, Domains . . . 489
11.1 The Spontaneous Magnetization 490
11.1.1 Temperature Dependence of the Magnetization in the Molecular Field Approximation 491
11.1.2 Curie Temperature in the Weiss-Heisenberg Model 494
11.1.3 Curie Temperature in the Stoner Model 498
11.1.4 The Meaning of “Exchange” in the Weiss-Heisenberg and Stoner Models ... 501
11.1.5 Thermal Excitations: Spin Waves 504
11.1.6 Critical Fluctuations ... 509
11.2 The Magnetic Anisotropy 514
11.2.1 The Shape Anisotropy 516
11.2.2	The Magneto-Crystalline Anisotropy	519
11.2.3	The Discovery of the Surface Induced Magnetic Anisotropy	520
11.3	The Magnetic Microstructure: Magnetic Domains and Domain Walls	521
11.3.1	Ferromagnetic Domains	521
11.3.2	Antiferromagnetic Domains	525
11.4	Magnetization Curves and Hysteresis Loops	525
11.5	Magnetism in Small Particles	527
11.5.1	Néel and Stoner-Wohlfarth Models	527
11.5.2	Thermal Stability	530
12	Magnetism of Metals	531
12.1	Overview	531
12.2	Band Theoretical Results for the Transition Metals	532
12.2.1	Basic Results for the Density of States	533
12.2.2	Prediction of Magnetic Properties	534
12.3	The Rare Earth Metals: Band Theory versus Atomic Behavior	540
12.4	Spectroscopic Tests of the Band Model of Ferromagnetism	544
12.4.1	Spin Resolved Inverse Photoemission	545
12.4.2	Spin Resolved Photoemission	549
12.5	Resistivity of Transition Metals	558
12.5.1	Conduction in Non-Magnetic Metals	559
12.5.2	The Two Current Model	563
12.5.3	Anisotropic Magnetoresistance of Metals	566
12.6	Spin Conserving Electron Transitions in Metals	568
12.6.1	Spin Conserving Transitions and the Photoemission Mean Free Path	568
12.6.2	Determination of the Spin-Dependent Mean Free Path using the Magnetic Tunnel Transistor	571
12.6.3	Probability of Spin-Conserving relative to Spin-Non-Conserving Transitions	574
12.6.4	The Complete Spin-Polarized Transmission Experiment	578
12.7	Transitions Between Opposite Spin States in Metals	583
12.7.1	Classification of Transitions Between Opposite Spin States	583
12.7.2	The Detection of Transitions between Opposite Spin States	585
12.8	Remaining Challenges	592

Part V Topics in Contemporary Magnetism
13 Surfaces and Interfaces of Ferromagnetic Metals 597
 13.1 Overview ... 597
 13.2 Spin-Polarized Electron Emission from Ferromagnetic Metals 598
 13.2.1 Electron Emission into Vacuum 598
 13.2.2 Spin-Polarized Electron Tunnelling between Solids 603
 13.2.3 Spin-Polarized Electron Tunnelling Microscopy 608
 13.3 Reflection of Electrons from a Ferromagnetic Surface 611
 13.3.1 Simple Reflection Experiments 613
 13.3.2 The Complete Reflection Experiment 618
 13.4 Static Magnetic Coupling at Interfaces 623
 13.4.1 Magneto-Static Coupling .. 624
 13.4.2 Direct Coupling between Magnetic Layers 625
 13.4.3 Exchange Bias .. 627
 13.4.4 Induced Magnetism in Paramagnets and Diamagnets 639
 13.4.5 Coupling of Two Ferromagnets across a Non-Magnetic Spacer Layer ... 642

14 Electron and Spin Transport .. 647
 14.1 Currents across Interfaces between a Ferromagnet and a Non-Magnet .. 647
 14.1.1 The Spin Accumulation Voltage in a Transparent Metallic Contact .. 647
 14.1.2 Decay of the Spin Accumulation Potential away from the Interface .. 651
 14.1.3 The Diffusion Equation for the Spins 652
 14.1.4 Giant Magneto-Resistance (GMR) 655
 14.1.5 Measurement of Spin Diffusion Lengths 659
 14.1.6 Typical Values of Spin Accumulation Voltage and Boundary Resistance ... 661
 14.2 Spin-Injection into a Ferromagnet 662
 14.2.1 Origin and Properties of Spin Injection Torques 663
 14.2.2 Switching of the Magnetization with Spin Currents: Concepts ... 670
 14.2.3 Excitation and Switching of the Magnetization with Spin Currents: Experiments ... 672
 14.3 Spin Currents in Metals and Semiconductors 677
 14.4 Spin based Transistors and Amplifiers 680

15 Ultrafast Magnetization Dynamics ... 685
 15.1 Introduction ... 685
 15.2 Energy and Angular Momentum Exchange between Physical Reservoirs ... 688
 15.2.1 Thermodynamic Considerations 688
 15.2.2 Quantum Mechanical Considerations: The Importance of Orbital Angular Momentum 690