The Chemistry of Zinc-Microbe Interactions in the Sediments of Lake DePue, IL

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY
Field of Civil Engineering

By
Samuel M. Webb

EVANSTON, ILLINOIS
December 2001
The Chemistry of Zinc-Microbe Interactions in the Sediments of Lake DePue, IL

Samuel M. Webb

The work described within examines metal speciation and the interactions between metals and microbiology in both laboratory settings and the natural environment. The approach is unique for its examination of metals using advanced microscopic and spectroscopic tools. The significance of this work is the novel approach that is taken in the collection, processing, and analysis of X-ray absorption data, using a continuous scanning technique (CS-XAS). This allows the acquisition of the experimental error, which can be carried through each step of the data reduction process. A computer code, SAMXAS was developed to utilize the data and the errors for the spectral deconvolution of environmental samples. The deconvolution was based upon a set of geochemically relevant reference compounds that are expected in sedimentary environments. To this end, a combination of analytical electron microscopy (AEM) and CS-XAS is exceptionally helpful. In addition to providing information on particle morphology and spatial relations, data from AEM gives the elemental associations on individual particles that can be used to infer their composition. From this information, the appropriate standard compounds can be chosen for XAS to verify the observations from AEM.
These techniques were then applied to examine the metal speciation in a complex, contaminated environment. Results from a study of Lake DePue, IL show that the metal speciation changes significantly as function of the contamination gradient. From joint observations with these two methods, zinc shifts from highly labile and mobile chemical forms in the most contaminated regions, to relatively stable, buried sulfides once transported away from the site. In addition, many of the speciation changes that occur in the sediments are mediated through microorganisms. Through the inference of chemical changes and direct microscopic evidence, these microbes are intimately associated with zinc contamination in the sediment. Isolates from the lake were grown in pure culture in the laboratory to examine the chemical changes that they govern in closer detail. With the aide of microcosm experiments and pure culture experiments, the microbes from Lake DePue display a wide array of chemical interactions with zinc and cadmium in the environment. These include the production of insoluble phosphates and the incorporation of zinc into thiol bound proteins.
I would like to thank my advisor, Jean-François Gaillard, for his help, support, patience, and guidance during my studies at Northwestern. I would like to thank Marcia M. West for her expertise in the preparation of ultrathin-sectioned samples. Special thanks are also deserved for John Quintana, director of DND-CAT at the Advanced Photon Source. Without his generous allotment of beamtime and expertise there as well, none of the X-ray absorption experiments could have gone as well as they did. Numerous fellow students have assisted me in the field and the lab, as well as outside of the lab. I would like to thank Adam Zacheis, Jill Kostel, Alex (forever the Kid) Agrios, Tanita Sirivedhin, Melissa Nolan, Deanna Hurum, Ted Peltier, Heidi Gough, Elena Capone, and Alex Chen for all putting up with me at one time or another. Finally, postdoctoral fellow Dr. Bradley Jackson has also been invaluable to this work for his part in growing the DePue microorganisms in pure culture.

I would also be totally remiss if I forgot to thank the generous staff at Tommy Nevin’s for their support and encouragement while completing my Ph.D. experience at Northwestern. They have always been dear to me, whether as an outlet for my ramblings, or an outlet for a pint. Without them, I do not think that I would have retained my sanity throughout this journey.

Funding for this work was provided by the National Science Foundation (NSF-MCB: #9807697 to J.-F. G.), and the Illinois Department of Natural Resources (IL-DNR: # 98114
to J.-F. G.). Some of this work was performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Synchrotron Research Center located at Sector 5 of the Advanced Photon Source. DND-CAT is supported by the E.I. DuPont de Nemours & Co., The Dow Chemical Company, the U.S. National Science Foundation through Grant DMR-9304725 and the State of Illinois through the Department of Commerce and the Board of Higher Education Grant IBHE HECA NWU 96. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Energy Research under Contract No. W-31-102-Eng-38.
You do not like them.
So you say.
Try them! Try them!
And you may.
Try them and you may, I say.

Sam!
If you will let me be,
I will try them.
You will see.

Say!
I like green eggs and ham!
I do! I like them, Sam-I-am!
And I would eat them in a boat.
And I would eat them with a goat…

And I will eat them in the rain.
And in the dark. And on a train.
And in a car. And in a tree.
They are so good, so good, you see!

So I will eat them in a box.
And I will eat them with a fox.
And I will eat them in a house.
And I will eat them with a mouse.
And I will eat them here and there.
Say! I will eat them ANYWHERE!

I do so like
green eggs and ham!
Thank you!
Thank you,
Sam-I-am!

Dr. Seuss, from *Green Eggs and Ham*
TABLE OF CONTENTS

1.0 INTRODUCTORY REMARKS .. 1

2.0 BACKGROUND .. 4
 2.1 BIOGEOCHEMICAL PROCESSES IN FRESHWATER SEDIMENTS 4
 2.2 METAL CYCLING IN LAKE SEDIMENTS 7
 2.3 MICROBIAL INTERACTIONS WITH METALS 11
 2.4 ANALYTICAL CONSIDERATIONS 21
 2.5 HYPOTHESIS 23
 2.6 OBJECTIVES 25

3.0 SIGNIFICANCE OF WORK ... 28

4.0 MATERIAL AND METHODS ... 32
 4.1 FIELD SETTING 32
 4.2 FIELD SAMPLING .. 33
 4.2.1 Water column sampling 34
 4.2.2 Sediment sampling 35
 4.2.3 Porewater sampling 36
 4.3 AQUATIC CHEMICAL METHODS ... 38
 4.3.1 Colorimetric methods 38
 4.3.2 Heavy metal determination 40
 4.3.3 Sequential Extractions 41
 4.3.4 Capillary electrophoresis 42
 4.3.5 Voltammetry 44
 4.4 X-RAY ABSORPTION SPECTROSCOPY 46
 4.4.1 Theory 46
 4.4.2 Experimental 60
 4.4.3 Data analysis 62
 4.4.4 Spectral deconvolution 65
 4.5 ELECTRON MICROSCOPY .. 72
 4.5.1 SEM analysis 72
 4.5.2 TEM analysis preparatory technique 72
5.0 PHYSICOCHEMICAL PROPERTIES OF LAKE DEPUE _____________ 75
 5.1 WATER COLUMN PROPERTIES 75
 5.2 PROPERTIES AT C1 79
 5.3 SEDIMENT CHARACTERIZATION 81

6.0 CHARACTERIZATION OF PARTICLES BY AEM ________________ 85
 6.1 CHARACTERIZATION OF ZINC BEARING PARTICLES 86
 6.2 QUANTITATIVE RESULTS 91

7.0 QUANTITATIVE DETERMINATION OF ZINC
 COORDINATION BY CS-XAS ________________________________ 100
 7.1 SEDIMENT EXAFS PROFILES 101
 7.2 COMPARISON TO SEQUENTIAL EXTRACTION RESULTS 111

8.0 MICROCOSEM EXPERIMENTS ON LAKE DEPUE SEDIMENTS ____ 115
 8.1 MICROCOSEM SETUP 116
 8.2 MICROCOSEM CHEMICAL OBSERVATIONS 121
 8.3 XAS OF MICROCOSEM PARTICLES 127
 8.4 MICROCOSEM MICROBIAL POPULATIONS 132
 8.5 RESULTS OF THE MICROCOSEM EXPERIMENTS 133

9.0 MICROBIAL RESPONSE TO ZINC AND CADMIUM
 IN PURE CULTURE ________________________________ 135
 9.1 ANALYSIS OF CS-EXAFS SPECTRA FROM MICROBIAL SAMPLES 136
 9.2 MICROBE ISOLATION AND CHARACTERIZATION 141
 9.3 METAL COORDINATION IN WHOLE MICROBIAL CELLS 146
 9.3.1 DePue Isolate X 148
 9.3.2 DePue Isolates D and Mt 151
 9.3.3 DePue Isolate Z 157
 9.3.4 Cadmium binding in DePue Isolate X 158
 9.3.5 Coordination of zinc to bacterial cell walls 163
 9.4 SUMMARY 167

10.0 CONCLUSIONS ___ 171

11.0 REFERENCES__ 178

APPENDICIES ___ 191

12.0 APPENDIX A: DND-CAT DATA COLLECTION MANUAL _________ 191

13.0 APPENDIX B: SAMXAS MANUAL _____________________________ 226